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ABSTRACT

Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for
public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome
(MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA
(siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty
of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane traffick-
ing, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in
early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhi-
bition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endo-
somes. The several host factors identified in this study may provide avenues for targeted therapeutics.

IMPORTANCE

Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. How-
ever, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified
novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this
study may provide directions for future research on targeted therapeutics.

Coronaviruses (CoV) are a family of enveloped, positive-strand
RNA viruses that can cause respiratory and enteric disease

both in humans and in a wide range of animals. To date, six dif-
ferent virus species are known to affect humans (1). The severe
acute respiratory syndrome (SARS) CoV is the etiological agent
responsible for an outbreak in 2002 to 2003, which caused approx-
imately 10% mortality in the 8,000 people infected worldwide (2).
A recently emerged CoV is responsible for the recent outbreak of
Middle East respiratory syndrome (MERS).

The other human coronaviruses (HCoV)—HCoV-229E,
HCoV-OC43, NL63, and HKU1—are collectively responsible for
about 10 to 30% of common colds. Generally harmless and self-
limiting, these HCoV are also implicated in severe clinical out-
comes, particularly in immunocompromised individuals, infants,
and the elderly (3). Other coronaviruses cause considerable eco-
nomic concern to the livestock industry as they readily infect
farmed animals such as cows (4), pigs (5), and chickens (6).

In addition to the diverse range of species that they infect,
coronaviruses have a propensity for host switching. For instance,
HCoV-OC43 bears a strong resemblance to a bovine coronavirus,
from which it probably originated (7). SARS-CoV is postulated to
have originated from bats and then transferred to palm civets and
finally humans (8). The MERS coronavirus probably also has its
origin in bats and is responsible for severe respiratory and renal
failure in humans (9). Although human-to-human transmission
is low at present (10), this new beta-coronavirus has raised global
health concerns because its mortality rate is more than 30% (1,
11). This “interspecies jumping” continuously threatens to initi-
ate a novel epidemic and presents a challenge for vaccine-based
containment.

It is thus critical to have a better understanding of the infec-
tious cycle of CoV. This multistep process includes attachment of

the spike protein (S) to cell surface receptors, endocytosis, and
then fusion of the viral and endocytic membranes (12). The viral
capsid then undergoes an uncoating process to deliver the viral
genome into the cytosol.

Host ribosomes then translate the viral genome, yielding non-
structural proteins that modulate virus pathogenesis (13) and form
with host membranes the viral transcription/replication complex
(RTC). The RTC is responsible for transcription of full-length
genomic RNA as well as subgenomic RNA species via a nidovirus-
specific discontinuous transcription mechanism. Translation of the
subgenomic RNAs produces viral structural proteins, nucleocapsid
protein (N), membrane protein (M), envelope protein (E), and spike
protein (S). Finally, structural proteins are packaged with genomic
RNA into new virions secreted via the secretory pathway.

For all these steps, host proteins and cellular pathways are re-
quired. Drug inhibition and small interfering RNA (siRNA) stud-
ies have highlighted the early secretory pathway (14, 15) and DNA
damage response (16). Direct interactions between host and viral
proteins aid in virus assembly (16, 17). Recently, a genome-wide
yeast two-hybrid screen revealed the involvement of cyclophilins
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and the calcineurin/NFAT (nuclear factor of activated T cells)
pathway in SARS-CoV replication (18). Conversely, coronavirus
proteins can inhibit cellular processes that may impede its repli-
cation, such as the interferon response (19).

Targeting host factors may provide broad-specificity viral in-
hibitors, but an intimate knowledge of the required host genes is a
prerequisite. In this paper, we describe the use of a genome-wide
RNA interference (RNAi) screen as a first step to address this
question.

MATERIALS AND METHODS
Cell lines and viruses. H1299 cells were propagated in RPMI 1640 me-
dium containing 10 mM HEPES and 10% fetal bovine serum (FBS).
H1299 cells were transfected with PXJ41neo vector encoding renilla lucif-
erase and grown in medium containing 500 �g/ml of G418 (Sigma-Al-
drich, St. Louis, MO) for 3 weeks before expansion of an antibiotic-resis-
tant cell line (H1299-RL). Huh7 cells were maintained in Dulbecco
modified Eagle medium (DMEM) supplemented with 10% FBS at 37°C in
a 5% CO2 incubator.

The Vero cell-adapted Beaudette strain of recombinant infectious
bronchitis virus luciferase (IBV-Luc), with its open reading frame (ORF)
3a-3b replaced with the firefly luciferase gene using an in vitro ligation
protocol (20), was generated by infection of Vero cells with IBV-Luc at a
multiplicity of infection (MOI) of approximately 0.1 in serum-free
DMEM followed by 20 h of incubation. IBV stocks were prepared through
lysis of infected cells with three repeated freeze-thaw cycles. Lysates were
spun down at 10,000 relative centrifugal force (RCF) to remove cell debris
and stored at �80°C until use. Recombinant virus expressing IBV-N fused
to a Flag epitope (IBV-N-Flag) was also generated using similar protocols
(21).

The HCoV-229E strain (ATCC VR-740) used in this study was directly
purchased from the ATCC.

Chemical inhibitors. MG132, bafilomycin A1 (Baf-A1), brefeldin A
(BFA), and cycloheximide were purchased from Calbiochem Merck Mil-
lipore (Billerica, MA), while Golgicide A was from Sigma-Aldrich.

siRNA screen assay. The commercial siRNA library (Dharmacon
siGenome) (Thermo-Fisher Scientific, San Jose, CA) was spotted in 384-
well black �Clear plates (Grenier Bio-One, Frickenhausen, Germany).
Using reverse transfection, siRNAs were transiently transfected at a final
concentration of 25 nM per well using 0.25 �l DharmaFECT2 reagent in
7.25 �l of RPMI medium, according to the manufacturer’s protocol. After
20 min of complex formation, cells were dispensed at a density of 3,000
cells per well using a Multidrop Combi dispenser (Thermo-Fisher Scientific).
Medium was removed at 72 h posttransfection, and cells were washed with
phosphate-buffered saline (PBS) twice before infection with IBV-Luc for 16
h. Cells were harvested with a Dual-Glo system (Promega, Madison, WI), and
luminescence signals for both firefly and renilla luciferase activities were ac-
quired with an Infinite M200 luminometer (Tecan, Durham, NC).

Data formatting, normalization, and screen quality control. Screen
quality control was performed with ScreenSifter (www.screensifter.com).
Each replicate’s firefly and renilla luciferase scores were normalized by
z-score by plate: Z � (Xi � Xm)/�x, where Xi is the firefly signal intensity
of the gene i, Xm is the mean firefly signal intensities of all the genes per
plate, and �x is the standard deviation [SD] of firefly signal intensities of
the genes per plate). After normalization, the Pearson correlation of firefly
scores was 0.71.

Gene annotation and subcellular localization, protein networks,
and comparison of screens. Annotation information was from Gene On-
tology (GO) (22), GeneCards (www.genecards.org) (23), and NCBI (http:
//www.ncbi.nlm.nih.gov/gene). Gene enrichment was analyzed using
DAVIDS bioinformatics (http://david.abcc.ncifcrf.gov/) (24) and Screen-
Sifter. The protein network was created using a combination of STRING
(http://string-db.org/) (25), Cytoscape, and ScreenSifter.

siRNAs. siRNAs for primary and secondary screens were from Dhar-
macon’s siGenome series. Pooled siRNA against Arf1, GBF1, CUL3,

RBX1, and NEDD8 was from Dharmacon OnTargetPlus. One siRNA
against valosin-containing protein (VCP) (sense strand, 5=-AAGUAGGG
UAUGAUGACAUUG-3=; antisense strand, 5=-CAAUGUCAUCAUACC
CUACUU-3=) was from Sigma-Aldrich.

Western blotting. Anti-IBV-N, anti-IBV-S, and anti-NS3 antibodies
(1:4,000) were raised as previously described (26). Mouse monoclonal
antibodies against double-stranded RNA (dsRNA) were purchased from
Scions, Hungary. Antibodies against �-tubulin (1:1,000), actin (1:1,000),
and VCP (1:1,000) were purchased from Sigma-Aldrich, and antibodies
against EEA1 (early endosomal antigen 1) (1:500), GBF1 (1:1,000), and
Arf1 (1:1,000) were obtained from Abcam (Cambridge, MA).

Immunofluorescence. Cells on coverslips were fixed with 4% formal-
dehyde, permeabilized with 0.2% Triton X-100, and incubated with the
following antibodies: mouse anti-dsRNA (English & Scientific Consulting
Bt., Hungary) (1:500), rabbit anti-Flag (Sigma-Aldrich) (1:250), mouse
anti-Flag (Sigma-Aldrich) (1:250), and mouse anti-EEA1 (BD Biosci-
ences, Franklin Lakes, NJ) (1:300).

Viral plaque assay and 50% tissue culture infective dose (TCID50)
method. Viral titers for IBV infection were determined using plaque as-
says. Briefly, Vero cells were seeded into 6-well plates 24 h prior to infec-
tion with 200 �l of 10-fold-serially diluted virus stock. After 1 h of absorp-
tion at 37°C, unbound virus particles were removed and cells were washed
twice with PBS and maintained in 2.5 ml of DMEM containing 1% FBS
and 1% carboxymethyl cellulose for 3 days. The cells were fixed with 4%
paraformaldehyde and then stained with 0.1% toluidine blue. The num-
ber of plaques was counted, and the virus titer was calculated as PFU per
milliliter.

Viral titers of HCoV-229E were also determined using the median
tissue culture infectious dose (TCID50) per milliliter in Huh7 cells seeded
in 96-well microplates.

Subcellular fractionation. Reverse transfection of 4 million cells was
performed with siRNAs at a final concentration of 30 nM per well using
160 �l DharmaFECT2 in 1.6 ml of RPMI medium. At 72 h posttransfec-
tion, cells were incubated with IBV (MOI, 0.25) for 4 h at 37°C. Infected
cells were washed with ice-cold PBS, disrupted using a cell scraper in
homogenization buffer (HB) (250 mM sucrose, pH 7.4, Tris, 1 mM
EDTA) in the presence of protease (Complete EDTA-Free; Roche Applied
Science, Indianapolis, IN) and phosphatase (PhosphoHalt; Roche Ap-
plied Science) inhibitors, and homogenized using a 22-gauge needle.
Postnuclear supernatant (PNS) was obtained after centrifugation at
2,000 � g for 5 min at 4°C, and crude separation of the endosomal frac-
tions was achieved via a sucrose flotation discontinuous gradient. The
sucrose concentration of the PNS was adjusted to 40.6% by the addition of
62% sucrose (1:1.2, vol/vol), and the PNS was loaded on the bottom of an
SW41 ultracentrifuge tube (Beckman, Fullerton, CA). The suspension
was overlaid sequentially with 35% sucrose (2.5 ml), 25% sucrose (2 ml),
and finally HB (1.5 ml). After 1 h of centrifugation at 100,000 � g at 4°C,
1-ml fractions were collected and subjected to RNA and protein extrac-
tion using TRIzol reagent (Invitrogen, Carlsbad, CA), according to the
manufacturer’s protocol.

RESULTS
Identification of cellular factors involved in coronavirus repli-
cation. The infectious bronchitis virus (IBV) was used as a model
coronavirus for its ease of large-scale handling and genetic manip-
ulation. We conducted the screen using an siRNA pool library
targeting 21,121 different genes in H1299 cells, a lung carcinoma
cell line permissive for IBV infection (27) (Fig. 1A).

At 72 h post-siRNA transfection, cells were infected with IBV-
Luc, a recombinant strain of IBV expressing firefly luciferase (20).
Firefly luminescence was measured at 16 h postinfection (hpi),
which corresponds to peak firefly activity and includes some sec-
ondary infection of neighboring cells (data not shown). It should
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theoretically allow identification of host factors involved at any
stage of infection.

To assess RNAi-associated cellular toxicity, H1299 cells were
stably transfected with renilla luciferase, whose signal correlates

with cell number. To eliminate false positives, samples with low
cell numbers are usually excluded (28, 29, 30). However, this
thresholding can lead to false negatives, genes with a real impact
on viral infection but also a certain depletion-associated cytotox-
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FIG 1 Genome-wide RNAi screen for cellular factors affecting IBV replication. (A) Assay overview. H1299-RL was infected with rIBV-Luc, and 16 h later, both
firefly and renilla luciferases were measured. (B) Genome-wide RNAi screen. Average Z scores of renilla and firefly luciferase activities plotted on x and y axes,
respectively. A cutoff of 2.5 SD from nontargeting control siRNAs defines hits. (C) Workflow of the validation process. (D) Gene ontology analysis was performed
on validated hits. Graphs show statistically significant (P � 0.05) enrichment of cellular components, biological processes, and molecular functions. (E) Pie chart
of enriched cellular components. ER, endoplasmic reticulum; ECM, extracellular space.

Wong et al.

11118 jvi.asm.org November 2015 Volume 89 Number 21Journal of Virology

http://jvi.asm.org


icity. To optimize selection, we plotted renilla against firefly aver-
age luciferase z-scores. For most wells, there was a direct correla-
tion between the two signals. However, this trend deviated from
linearity at higher renilla luciferase values, suggesting that virus
production was limited.

To confirm this viral replication saturation at high cell densi-
ties, a range of 2,500 to 12,000 cells/well was infected with IBV-
Luc. Firefly signal increased linearly with cell density but saturated
above 	7,500 cells/well (data not shown). Under screen condi-
tions, cellular density was estimated to rise from 	3,000 to a max-
imum of 	10,000 cells (
95% confluence) after 3 days of culture,
thus falling within saturation range. The infection plateau was not
due to a limiting amount of infectious particles, as an increasing
multiplicity of infection (MOI) only marginally increased firefly
luciferase activity (data not shown). Instead, a less efficient infec-
tion process due to high cell confluence is a likely explanation.

The Michaelis-Menten equation was empirically found to best
account for this saturation effect in the genome-wide screen. By
using this equation and setting a threshold at 2.5 standard devia-
tions (SD) away from nontargeting controls, we identified 263
siRNA pools decreasing IBV firefly luciferase activity when si-
lenced. On the other hand, enhancement of virus replication by
130 siRNA pools suggests that the corresponding genes may have
protective roles against coronavirus infection (Fig. 1D).

Eighty-three cellular factors validated by at least two inde-
pendent RNAs. Of the 263 siRNA pools identified as supporting
coronavirus infection, those found not to correspond to mRNAs
in the current NCBI database (pseudogenes, RNA genes, or with-
drawn mRNA records) were excluded from further analysis. The
remaining 225 siRNA pools were subjected to a validation screen
with each of the four siRNAs from the pool tested individually.
Eighty-three (39%) of these pools had at least two out of four
siRNAs that significantly (2 SD) decreased IBV replication com-
pared to the nontargeting control and thus are unlikely to be due
to off-target effects. Thus, we propose that the 83 corresponding
genes are host factors required for IBV infection (Fig. 1C).

GO analysis. Using Gene Ontology (GO), 76.2%, 70%, and
66.2% of the 83 genes were classified as involved in biological
processes, cellular components, and molecular processes, respec-
tively (Fig. 1D). A significant number of proteins localized to
membranous compartments in the cell (n � 19), including those
residing on the plasma membrane (n � 9), endoplasmic reticu-
lum (ER) (n � 3), and Golgi apparatus (n � 5) (Fig. 1E), consis-
tent with the known extensive interactions and modifications of
the host membranous structures for virus entry, fusion, replica-
tion, and secretion (31, 32).

In spite of coronavirus replication and transcription occurring
almost exclusively in the cytoplasm, proteins localized to the nu-
cleus were also enriched (n � 38), with approximately one-third
(n � 13) residing also in the nucleolus (Fig. 1E). This subcellular
localization is due in part to genes involved in RNA splicing and
transcription regulation (Fig. 1D; also see below).

Proteins in cellular processes involved in coronavirus repli-
cation are enriched in the screen results. Among the biological
processes GO, RNA splicing appeared prominently (Fig. 1D), and
several other genes were associated with the spliceosomal cellular
compartment GO. Together, this group of genes was largely rep-
resented among hits (Fig. 2A). The screen identified two members
of the heterogenous nuclear ribonucleoprotein (hnRNP) family,
hnRNP L and hnRNP N3, which have been recently identified to

bind to IBV N protein. They are closely related to a known regu-
lator of coronavirus, hnRNP A1, and form part of an interaction
network that connects to coronavirus RNA and protein (NSP12)
(Fig. 2B). Other members of this potential network include 10
other genes (CDC5L, CWC15, DHX8, PLRG1, PRPF18, PRPF6,
SART1, SNRPD1, U2AF1, and U2AF2) that either have been con-
nected to hnRNPs or have a proposed function in the spliceosome
(Fig. 2B).

Another host process regulated in response to viral infection is
protein synthesis. The eukaryotic translation initiation factor 3,
subunit E (eIF3f), identified in our screen, interacts with six other
known coronavirus-interacting proteins (Fig. 2C). Among them
are two other members of the eIF3 family that had been previously
identified to be involved in SARS-CoV replication and to be im-
portant for modulating host translation of inhibitory cytokines
and chemokines (18, 33). Two other factors identified, PES1 and
RSL24D1, also interact with eIF3E and with factors otherwise
known to interact with viral proteins (Fig. 2C).

Membrane trafficking genes. Several hits were linked to a cel-
lular compartment GO linked to membranes and were known
regulators of membrane traffic processes (Fig. 2D). Among them
are Vps4B, also known as the charged multivesicular protein 4b
(CHMP4B), which is a key component of the ESCRT complex that
regulates multivesicular body sorting, and the Golgi apparatus-
associated brefeldin A (BFA)-resistant GEF 1 (GBF1), which has
been shown to be required for multiple viruses (34, 35). GBF1 is a
regulator of ADP-ribosylation factors such as ADP-ribosylation
factor 1 (Arf1) (36). Despite not being a direct “hit” in our screen,
Arf1 scored close to the threshold. Interestingly, the related Arf5
scored high in our screen and was recently identified as required
for dengue virus (37). In a screen targeting the druggable genome
library, Burkard et al. identified several proteins mediating late
endosomal maturation as being important for mouse hepatitis
virus (MHV) infection (38). These proteins, however, were dis-
pensable for IBV infection (not shown), reflecting the fact that
different endocytotic processes are probably required by specific
members of the coronavirus family.

The UPS is highly represented. The interaction network es-
tablished above identified seven factors associated with the ubiq-
uitin-proteasome system (UPS), interacting extensively among
themselves as well as with other known CoV-interacting proteins
(Fig. 2E). In particular, six known CoV-interacting proteins inter-
act with the Nedd8 protein, and our screen identified three other
Nedd8-interacting proteins. Two of them, Cullin-3 (Cul3) and
ring box 1 (Rbx1), form the core of the BTB-CUL3-RBX1 E3 ligase
complex (39). Activation of this complex requires covalent attach-
ment of Nedd8 by ube2m, a ubiquitin-conjugating enzyme also
identified in our screen (40).

The requirement for Cul3, Rbx1, and Nedd8 was confirmed
with an independent secondary assay using Western blot analysis
against viral protein at 16 hpi but also 8 hpi. A reduction in viral
protein expression is associated with knockdowns of these genes at
both time points, suggesting a requirement for these proteins dur-
ing early infection stages (data not shown). It is not clear yet what
the relevant ubiquitinated substrates are, but it is noticeable that
depletion of PSMD14 and other proteasome subunits had a strong
inhibitory effect on viral infection. This proteasome requirement
is also consistent with previous findings on the inhibitory effect of
proteasome inhibitors on CoV replication (41, 42).

Our screen results also implicate two other UPS-related pro-
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teins: valosin-containing protein (VCP/p97) and ubiquitin fusion
degradation protein 1-like protein (Ufd1L) (Fig. 2E). The ternary
complex of Vcp-Ufd1L-Npl4 is one of the key mediators of ER-
associated degradation process (ERAD) (43, 44). All three com-
ponents were identified as primary hits in our screen, although
only VCP and Ufd1L could be validated in the deconvoluted
screen.

As depletion of VCP induced one of the strongest inhibitory
effects on IBV replication and had not been identified as a host
factor for coronavirus infection before, we chose to further char-
acterize its role in coronavirus infection.

We first compared multiple anti-VCP siRNAs. While the
screen siRNA pool (siVCP-Pool) reduced IBV-Luc activity by

14.4-fold, the 4 individual siRNAs in the pool (siVCP-05, -06,
-07, and -08) reduced IBV-Luc activity by 13-, 10-, 4-, and
6-fold, respectively. In addition, another custom-designed siRNA
(siVCP-Sig) resulted in a 23-fold reduction (data not shown). This
siRNA was used in subsequent experiments.

VCP is required for human coronavirus infection. To inves-
tigate if VCP is required by coronaviruses in general, the require-
ment for VCP in human coronavirus 229E (HCoV-229E) infec-
tion was determined. HCoV-229E infection of susceptible Huh7
cells resulted in more extensive cytopathic effects and was ob-
served in susceptible Huh7 cells treated with control siRNA rather
than those with VCP silenced. In addition, when these cells were
stained for the presence of dsRNA, the levels of dsRNA detected
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were significantly lower in VCP-knockdown cells than in control
(Fig. 3A). The lower rate of viral replication associated with VCP
depletion was also confirmed with quantitative real-time PCR us-
ing primers specific to HCoV-229E genomic RNA. Viral genomic
RNA detected in cells treated with siVCP was 2-fold lower than
that in controls (Fig. 3B). Antibodies against IBV nucleocapsid
protein (IBV-N), which cross-react with HCoV-229E nucleocap-
sid protein (N), were also used to determine expression of viral
protein in the absence of VCP. In these experiments, depletion of
VCP with RNAi consistently resulted in a decrease in HCoV-N
protein expression (Fig. 3C).

Finally, the titers of viral particles released in culture superna-
tant were determined by the method of median tissue culture
infectious dose (TCID50) per milliliter. Consistent with all the
previous results, the titer of viral particles released from siVCP-
treated cells was significantly lower than that in control (Fig. 3D).
The reduction in viral titer was confirmed independently with
standard viral plaque assay (Fig. 3D). Collectively, the results sug-
gest that VCP may be required for coronavirus in general.

VCP is involved in early stages of infection. To examine at
which stage VCP is required, IBV-infected cells were harvested at
10 hpi, when there is minimal secretion of virus and secondary
infection. Silencing of VCP reduced firefly luciferase activity by

nearly 8-fold compared with cells treated with nontargeting
siRNA control (Fig. 4A), suggesting a requirement in the initial
phase of infection.

The production of double-stranded RNA (dsRNA) intermedi-
ates, a hallmark of viral transcription/replication, at 10 hpi was
evaluated by immunofluorescence using a dsRNA-specific mono-
clonal antibody, revealing that silencing of VCP significantly re-
duced dsRNA levels (Fig. 4B). These results are consistent with a
concomitant reduction in viral protein expression, as reduced lev-
els of IBV-S and IBV-N proteins, revealed by immunofluores-
cence and Western blot analysis, respectively (Fig. 4B and C), were
also associated with VCP depletion. Furthermore, syncytium for-
mation, as revealed by the IBV-S antibody, was evident in nontar-
geting siRNA (siNT)-treated control cells but not observed in cells
depleted of VCP (Fig. 4B).

VCP is not required for viral attachment to cell surface and
virus entry. To examine virion attachment to cell surface, cells
treated with either control siNT or siVCP were incubated with
IBV-Luc at an MOI of approximately 0.5 for 1 h at 4°C to allow for
virus adsorption. Unbound virus particles were removed by wash-
ing, and bound viruses were quantified using standard plaque as-
say and did not reveal any decrease (Fig. 4D). Similarly, quantifi-
cation of bound virus using reverse transcription-PCR (RT-PCR)
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did not result in a decreased amount of virus-positive genomic
RNA detected on the surface of the infected VCP-depleted cells
(Fig. 4E), suggesting that VCP is not required for the virions to
bind to the host cell.

Next, we tested virus internalization by incubating cells first
with IBV-Luc at an MOI of approximately 0.5 for 1 h at 4°C before
washing and temperature shift to 37°C for an additional 1 h to
allow synchronized entry. Proteinase K was then added to remove
uninternalized virus before harvesting infected cells by freeze-
thawing. Internalized virions were quantified by both titration
plaque assay (Fig. 4F) and RT-PCR (Fig. 4G), and no significant
reduction was detected in VCP-depleted cells, suggesting that
VCP is also not required for virus entry.

Silencing of VCP inhibits early-stage degradation of viral N
protein. While monitoring the amount of the viral protein N at
early time points, we observed higher levels of N protein in VCP-
depleted cells at 4 hpi (Fig. 5A). This effect is transient, as by 8 hpi,
N protein levels in control cells were dramatically increased over

those at 4 hpi and became significantly higher than those in VCP-
depleted cells (Fig. 5A), where N protein remained constant,
which is consistent with the block in the infectious process de-
tected with other methods.

To determine if the difference at 4 hpi could be observed for
other genes, we tested siGBF1 but did not find similar elevated N
protein levels (Fig. 5B).

Typically, at 4 hpi, only a minimal amount of viral RNA and
protein can be detected (data not shown). We therefore hypothe-
sized that the N protein detected corresponds to the virion-asso-
ciated rather than the neosynthesized pool. Consistent with this
hypothesis, in cells pretreated with 10 �g/ml of cycloheximide, a
protein translation inhibitor, levels of N protein were not affected
in control or siVCP-treated cells (Fig. 5C). In contrast, at 8 h, these
levels were dramatically reduced in control cells, indicating that
most of the N protein detected at this time point is neosynthe-
sized. Interestingly, in VCP-depleted cells, N protein levels were
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still not affected at 8 h, indicating that the IBV-N detected there
came mostly from the infecting virions.

These data suggest that IBV-N associated with infecting viruses
is degraded at early stages of infection. Interestingly, cells pre-
treated with the proteasome inhibitor MG132 for 2 h prior to
infection display significantly increased N protein levels at 4 hpi
compared with control and dimethyl sulfoxide (DMSO)-treated
cells (Fig. 5D). Treatment with either 5 �g/ml BFA or 10 �M
Golgicide A1 did not result in increased N levels, consistent with
the GBF1 depletion experiment results. On the other hand, treat-
ment with bafilomycin A1 (Baf-A1), which targets proton pump
ATPases, was comparable to MG132 in effect (Fig. 5D).

Together, our results suggest that the N protein associated with
infecting virions is degraded before a new pool is neosynthesized
and that this process requires endosomal acidification and protea-
some function.

Silencing of VCP results in accumulation of virus in early
endosomes. Since VCP has been linked to the ubiquitin-protea-
some system, a possible explanation for the accumulation of viri-
on-associated N protein is that VCP is directly required for its
degradation. In this model, VCP would act after the release of the
viral nucleoprotein from the endosomal system. However, during

the course of this study, VCP was reported to be implicated in
endosomal maturation after VCP depletion (45, 46) and could
therefore result in a trapping of viral particles in endosomes before
cytosolic release.

To distinguish between these possibilities, the presence of in-
tracellular viral particles was tested by immunofluorescence. Since
the IBV-N antibody is incompatible with immunofluorescence,
cells were infected with another recombinant virus expressing
IBV-N fused to a Flag epitope (IBV-N-Flag) (21). The number of
Flag-positive vesicular structures was counted in 10 random cells
from each treatment group and compared with the control group,
demonstrating that siVCP-treated cells contained more IBV-N-
positive vesicles (data not shown).

Infected cells were also costained for the early endosomal an-
tigen 1 (EEA1), and numerous and enlarged vesicles positive for
EEA1 were observed in siVCP-treated cells (Fig. 6A). Anti-Flag
staining revealed that virion-associated IBV-N protein colocalized
extensively with these enlarged endosome clusters (Fig. 6A), sug-
gesting that virion particles accumulate in an endosomal com-
partment in the absence of VCP.

IBV-infected cells were next subjected to subcellular fraction-
ation using a sucrose flotation step and discontinuous gradient 4 h
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after infection. VCP depletion was verified by Western blotting
(Fig. 6B). Using a modified protocol first described by Gruenberg
and Gorvel for endosomal fractionation (47), late and early endo-
somes were concentrated in the 8%/25% (fractions 2 and 3) and
25%/35% (fractions 5 and 6) interphases, respectively. TRIzol ex-
traction was used to obtain both RNA and protein to detect the
presence of virus particles via RT-PCR or Western blot analysis,
respectively.

In both control cells and cells treated with siVCP, most of the
virus genomic RNA was detected in heavier fractions (fractions 7
to 11). RNA detected from these fractions is likely to come from
viral material present in the cytosol as well as that released during
cell lysis. Viral RNA was also detected in fractions 2 and 3 (late
endosome fractions) in the control group. In contrast, in samples
where VCP was silenced, viral RNA was nearly undetectable in the
late endosome fractions (Fig. 6C). Instead, viral RNA was ob-
served to accumulate in early endosomes (fraction 5) together
with EEA1 (Fig. 6D). Analysis of the viral protein yielded similar

results. When probed with antibodies against N protein, knocking
down VCP resulted in viral proteins accumulating in fractions
that were also enriched with EEA1 (Fig. 6C and D). These results
suggest that, in the absence of VCP, the infecting virus accumu-
lates in an early endosomal compartment.

DISCUSSION

Like all viruses, CoV are highly dependent on their host cellular
machinery. Until now, relatively few human genes had been func-
tionally implicated in CoV replication. Through this genome-
wide RNAi screen against IBV, we have identified 83 new cellular
cofactors. Albeit IBV is an avian virus, coronaviruses are known to
be able to jump species, and as we used a human lung cell line for
our screen, the host factors identified are likely to be conserved
across species and, to some extent, across different strains of coro-
naviruses. In fact, 30 hits are directly or indirectly interacting with
proteins that were found to interact with SARS-CoV proteins
(data not shown), supporting the notion of a relatively well con-
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served set of interactions. To summarize our observations, a cel-
lular map illustrating the predominant subcellular locations and
functions of hits with a presumed function is presented in Fig. 7.

Although we did not focus our study on it, the host negative
regulators of CoV promise to help us understand how cells can
resist CoV infection. In fact, the ATP-binding cassette subfam-
ily E member 1 (ABCE1) gene was an important and confirmed
hit. The encoded protein has been proposed to bind to and
inhibit RNase L. Activation of RNase L is part of the 2=,5=-
oligoadenylate synthetase (OAS)–RNase L pathway, which is
activated in response to interferon and results in a block of
protein synthesis and the promotion of viral RNA degradation
(48). It would be interesting to test whether ABCE1 is consti-
tutively active in H1299 cells or whether it might be activated
by CoV infection.

Another group of very interesting genes is from the RNA bind-
ing family. Indeed, a major feature of the CoV life cycle is the
discontinuous transcription of its genomic RNA. Our screen re-
sults suggest that the host splicing machinery is heavily recruited
to perform this task. For example, one of the hits is hnRNP L, a

protein known to regulate mRNA splicing (49). Among the most
interesting prospects for the development of new therapeutic ap-
proaches is the targeting of host genes required for multiple vi-
ruses. The VCP/Ufd1L complex could represent such a target, as it
appears essential for CoV, dengue virus (data not shown), and
West Nile virus (WNV) (shown for Ufd1L) (29). In addition, VCP
was recently proposed to be required for poliovirus infection and
hepatitis B (50, 51).

VCP is an abundant protein implicated in an increasing num-
ber of biological processes, including membrane fusion after mi-
tosis (52), retrotranslocation of unfolded proteins from the endo-
plasmic reticulum (ER) (43, 53), spindle assembly (54), and, more
recently, endosome trafficking (45, 55). Thus, VCP might be re-
quired at multiple stages of viral replication or differently, de-
pending on the viruses. For instance, VCP was proposed to be
required after viral protein replication for poliovirus (50). For
IBV, VCP is required at an early step, preceding the production of
viral protein and RNA replication.

VCP depletion revealed a previously uncharacterized transient
degradation of the virion-associated N protein. N protein forms a
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tight complex with the viral RNA genome (56); it is thus possible
that this degradation is required for the cytosolic release of the
viral genome and productive infection. N protein is localized in-
side the viral envelope; thus, its degradation by the proteasome
must follow the fusion of the viral envelope. It is not known,
however, how neosynthesized N protein is protected from degra-
dation. The exact mechanism by which VCP facilitates N protein
degradation is also currently unclear. Hauler et al. (57) had previ-
ously reported that VCP is required for the proteasomal degrada-
tion of antibody-bound adenovirus capsid protein during the pro-
cess of intracellular neutralization. This process appears to be
substrate specific and may involve ATP-hydrolysis-driven unfold-
ing and disassembly of the large capsid protein to “fit” into the
proteasome core for degradation. VCP-dependent degradation of
N protein may occur in a similar fashion.

The subcellular fractionation of infected cells upon VCP deple-
tion resulted in the association of viral particles with endosomal
membranes that cosegregated with EEA1. An interpretation of this
result is that VCP is required for the maturation of endosomes. A
block in endosomal maturation could result in a loss of acidification
of the virus-containing membranes and a failure of the viral envelope
to fuse with the endosomal membrane. Indeed, it has been reported
elsewhere that CoV spike protein requires an acidic pH to undergo
the protease cleavage that leads to fusion (32, 58).

The function of VCP in endosomal maturation is still unclear.
A recent report proposes a function for VCP in membrane fusion
and early endosome maturation through the segregation of EEA1
polymers (45). Another report implicates VCP in the extraction
and translocation of the polyubiquitinated mannose receptor
from endosomes to the cytosol (59). A complex of VCP and
UBXD1 has also been shown recently to regulate endolysosomal
sorting of ubiquitylated caveolin-1 (55), where the authors ob-
served an enlargement of late endosomes/lysosomes and an im-
pairment of multivesicular body formation. This phenotype of
enlarged late endosomes/lysosomes is similar to the effect of loss
of function of Cullin-3 (60). We also identified Cullin-3 in our
screen. In the absence of this protein, influenza virus particles have
been reported to accumulate in late endosomes/lysosomes and to
exhibit defective uncoating (60). Cullin-3-depleted cells also dis-
play an accumulation of morphologically abnormal acidic late
endosomes/lysosomes (LE/LY). Interestingly, Cullin ring ligases
have been shown previously to function with VCP (61). However,
whether Cullin-3 and VCP function together to permit CoV in-
fection remains unclear.

More work is obviously required to sort out the precise func-
tion(s) of VCP in the endosomal system and the requirements of
VCP for infection by IBV and other viruses. These efforts could be
rewarding, as blocking viral release into the cytosol is a promising
therapeutic strategy. Conversely, IBV-N protein degradation at
the early stages of infection could represent an interesting assay to
study endosomal maturation.
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